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Duality and the Cosmological Constant 
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A dynamical theory is studied in which a scalar field ~b in Einstein-Minkowski 
space is coupled to the four-velocity Ng of a preferred inertial observer in that 
space. As a consistent requirement on this coupling we study a principle of duality 
invariance of the dynamical mass term ofcb at some universal length in the small- 
distance regime. In the large-distance regime duality breaking can be introduced 
by giving a background value to ~b and a background direction to N~. It is shown 
that, in an appropriate approximation, duality breaking can be related to the 
emergence of a characteristic phase in which the condensation of the ground 
state allows massive excitations with a characteristic scale of squared mass which 
agrees with the present observational bound for the cosmological constant. 

1. I N T R O D U C T I O N  

In quantum f ield theory the structure o f  the vacuum is r ecogn ized  to be 
interrelated with the condensa t ion  o f  scalar  f ie lds ,  a phenomenon  character-  
ized  by  remnant  constant  vacuum expecta t ion  values  for those fields.  In 
general ,  such scalar  (vacuum) condensa tes  carry  informat ion about  var ious  
mass  scales which  are character is t ic  o f  the dynamica l  proper t ies  o f  the vac-  
uum. Fo r  example ,  a par t icular  type  o f  mass ive  part ic le  exci ta t ion o f  vacuum 
can be charac ter i sed  by  the mass  scale cor responding  to the mass ive  exci ta-  
t ions around a g iven  scalar  condensate .  

The  condensa t ion  o f  the vacuum and the re la ted  appearance  o f  character-  
istic mass  scales m a y  have an impor tant  effect  on the energy content  o f  the 
vacuum, because  one expects  that the cosmolog ica l  constant  receives  potent ia l  
contr ibut ions f rom any scale o f  mass  which  can be  extracted f rom the mass  
spect rum o f  phys ica l  f ields in quantum f ield theory. In part icular,  any mass ive  
part ic le  exci ta t ion around a given scalar  condensa te  can provide  a par t icular  
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type of contribution to the total value of the cosmological constant via the 
corresponding mass scale. In this way a nonvanishing contribution to the 
total energy density of the vacuum may arise from the mass scale of any 
scalar condensate. 

This kind of contribution, however, meets with an immediate difficulty. 
For example, the isolated contribution of the mass scale of the Higgs field 
in the standard model predicts a value for the cosmological constant which is 
many orders of magnitude away from the observational bound of that constant. 

A solution of this problem, which is a particular manifestation of the 
the cosmological constant problem [see Weinberg (1989) and references 
therein] may really require a theoretical scheme in which explicit recogniza- 
tion is given to the expected sensitivity of the total value of the cosmological 
constant to the entire mass spectrum of physical fields in quantum field 
theory, because in a unified theory the latter fields may not be independent, 
so that unexpected cancellations may occur among various contributions of 
the corresponding mass scales. Such a theoretical scheme is likely to reduce 
the issue of the cosmological constant to a picture in which the consistent 
contribution to the total value of that constant comes from a preferred mass 
scale of the vacuum, namely that assigning a cosmological range to the 
massive excitations of the vacuum. 

It must be emphasized that this picture is very subtle, and it is extremely 
difficult to find out how the contribution of the preferred mass scale among 
the other potential contributions could be established. But a preliminary task 
is to focus on the nature of this preferred mass scale. In the present paper 
we discuss tentative first steps in this direction. 

2. THE BROKEN PHASE OF LORENTZ INVARIANCE 

We remark that, in an exact Lorentz-invariant vacuum, the energy density 
is, almost by definition, zero. Therefore, one should expect that the defining 
characteristic of a nonvanishing energy density in vacuum is a principal 
violation of Lorentz invariance. The nature of the preferred mass scale in 
question depends on the consistency of such a picture in an essential way. 

To be more specific, we remark that a principal violation of Lorentz 
invariance may act in the right way to yield a consistent contribution to the 
cosmological constant via the mass scale of massive excitations around an 
associated scalar condensate. Before we present a model along this line, it 
is necessary to collect some general facts concerning what is expected to be 
the right way to think of a principal violation of Lorentz invariance. Such a 
violation of Lorentz invariance should in fact be a consequence of the still 
unknown principles underlying the unification of quantum physics and gravity 
and is expected to manifest itself at some characteristic scale in the ultrashort- 
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distance regime, described by an absolute scale of length lo. The understanding 
of the relation of l0 to the Planck length is an elusive task for quantum gravity. 
Here we merely note that the length l0 is expected to act as a sort of universal 
length that determines a lower bound to any scale of length probed in a 
measurement process. 

It should be noticed that the existence of such a universal length in the 
small-distance regime is in contrast with the universal requirement of 
Lorentz invariance. Indeed, no absolute line of demarcation between small 
distances and large ones can be defined without having a positive- 
definite measure of distances, a feature which is apparently absent in 
Einstein-Minkowski space. 

It was pointed out by Blokhintsev (1964) that, associating to the Einstein- 
Minkowski space a timelike vector N~, the so called internal vector, it is 
possible to distinguish between small distances and large ones by taking the 
positive-definite interval 

R 2 = (2N~N, ,  - "rlo.,,)xr N r  = 1 (1) 

Given such a metric, we may determine the absolute size of a distance by 
comparing R with the universal length lo. 

Generally, one would expect the idea of a universal length and the related 
internal vector to play a vital role in the ultrashort-distance extrapolation of 
physics. Unfortunately, the practical need for this idea in the development 
of present-day physical concepts (to a large extent) disappeared with the 
achievement of renormalizable theories, which explains why that idea has 
not attracted wide attention in the particle physics community. 

Different meanings are assigned in the literature to an internal vector; 
for a review see Nielsen and Picek (1983). We shall adopt the most obvious 
interpretation of the vector N~ and consider N~ at each space-time point as 
characterizing the four-velocity of a preferred inertial observer. The assign- 
ment of N~ to the vacuum singles out then a coordinate system as preferred, 
namely that in which the preferred inertial observer is at rest. Correspondingly, 
only a special group of Lorentz transformations can have an intrinsic signifi- 
cance, namely those which leave the special form N~ = (1, 0, 0, 0) invariant. 
Physically, this special group can be thought of as being composed of those 
transformations which move a physical system without affecting the preferred 
rest frame. Thus, if one limits oneself to this special group, the internal vector 
appears as a universal field which has the same absolute value in vacuum. 
In this respect the internal vector can be considered as corresponding to a 
characteristic property of the vacuum in the the broken phase of Lorentz 
invariance. We shall not comment here on the probable form of the preferred 
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rest frame defined by Nr because the results we want to present depend only 
on general considerations. 2 

3. THE M O D E L  

We first propose a theory which relates the broken phase of Lorentz 
invariance characterized by an internal vector N~ to the condensation of an 
associated scalar field. Such a condensation is organized in such a way as 
to emerge from a dynamical coupling of a (real) scalar field d~ with the 
internal vector N w We then study the massive excitations around the scalar 
condensate and relate the corresponding scale of mass to the present observa- 
tional bound on the cosmological constant. 

To arrive at the dynamical coupling of ~b with Nr we start with the current 

1 
Jr = - 2  ~b 0"~ ~b -1 (2) 

It can be simply checked that 

OpJ  ~ : (l)--l([-]t~) - -  (~)--101a(l)0l~(~) (3) 

and 

Y J "  = 6-20.~bO~b (4) 

are valid. Putting these relations together, we get the 

In what follows we shall call F {~b} the dynamical mass term. 
It should be emphasized that the identity (5) is a formal consequence 

of the definition (2) and not a dynamical law for ~b. From it, however, a large 
class of dynamical theories can be obtained in the form of a divergence 
theory by making various assumptions about the current J~ in the dynamical 
mass term in (5). For example, a simple model theory can be characterized 
by requiring 

O~J ~ = 0 (6) 

It leads, as can be simply checked, to a cancellation of the dynamical mass 
term by the field redefinition cr = In d~. However, to allow for a dynamical 
coupling of ~b with the internal vector Nr the dynamical mass term must 

2For a conceivable form of  such a rest frame in a laboratory on the earth a proposal is made 
in Phillips (1965), where possible experiments to detect it are also discussed. 
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take a more complicated structure. In this case, we can study a model theory 
based on a divergence theory of the type 

O~J ~ = N ~ N J ~  ~ (7) 

Given a divergence theory of the type (7), we get from the identity (5) the 
corresponding equation for qb 

radp - ( j j v  + N ~ N v j ~ j v ) ~  = 0 (8) 

We remark that the dynamical mass term in (8) is invariant under both 
transformations 3 

o 1/~, N~ o - N~ (9) 

which can be performed independently. This indicates an inherent ambiguity 
in the theory, because apparently independent configurations composed of 
and N~ become mathematically interchangeable at any physical scale of mass 
which can be predicted by the dynamical mass term. In a simple generalization 
this ambiguity can be avoided by letting the universal length l0 enter the 
source of the divergence in (7). We shall study a theory of the type 

O~J~ = N ~ N ~ J ~ J ~  - loN~NdV.~J~JVJ'V (10) 

From the identity (4) we get the field equation 

t3~ - ( j j v  + N~N, , j~ j~ ,  _ l o N ~ N # N j ~ j , , j . t ) d  p = 0 (11) 

The interesting point is that the invariance property of the dynamical mass 
term in (11) connects now both transformations in (9). That is, the dynamical 
mass term in (11) becomes invariant under a duality transformation connecting 
the interchange of ~b to the reciprocal value dp-1 to a corresponding reversal 
of the direction of the internal vector N~. The emergence of this duality is 
considered as reflecting the essential feature of the broken phase of Lorentz 
invariance at length scales --lo. 

It is not unreasonable to expect that 'macroscopic' duality becomes 
significantly unstable. For example, at distances larger than the universal 
length 1o the average value of the scalar field is likely to couple with the 
matter in the universe. Such a coupling has, among other things, to introduce 
a duality breaking to single out a preferred configuration composed of the 
scalar field ~b and the internal vector N~ throughout the space. Although the 
nature of such a duality breaking seems to be significantly linked with the pres- 
ence of matter and a nontrivial gravitational field (H. Salehi, work in progress), 

3Here we treat the scalar field as if it were a dimensionless quantity. In the natural set of units 
a combination of d~ and the universal length lo may be used to get from qb a field having the 
typical dimension of an inverse distance. 
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it is nevertheless instructive to study its effect on the dynamical theory defined 
by (10) and (11) in Einstein-Minkowski space. 

We shall consider the simplest duality breaking, a preferred background 
value dp as an average value of d~ taken over large distances, and correspond- 
ingly a preferred background direction of the internal vector N~ as an average 
value J~ of the current J~ taken over large distances. The essential feature 
of such a duality breaking is that it requires (on dimensional grounds) that 

I 

the duality-breaking parameters ~ and N~ be interrelated via a relation of 
the type 

h 
~ = ~ o N ~  (12) 

where k can depend only on ~. Since we wish to consider the duality breaking 
as a large-distance effect, the characteristic scale of mass defined by the 
right-hand side of (12) must be related to those scales of lengths which are 
significantly larger than the universal length 10. This is only the case if h is 
taken as significantly small. We assume it to be of order of the ratio of the 
universal length l0 and the radius of the universe R, 

l0 
x - -  (13) 

R 

In this way the duality breaking is considered as a cosmological effect. Having 
assumed a duality breaking of this type, we proceed to compute the effective 
form of the dynamical mass term in (11) for the divergence theory (10). 

First, we can linearize the quadratic term in Jr  in the source of the 
divergence (10) to find the approximation 

0)~.I), = N~Nj~J ~ -- loN~N~VQ~rJV (14) 

Correspondingly, the quadratic term in the dynamical mass term of the field 
equation (11) may be linearized in J~ to yield 

D(~ -- (j)~J~ + N)~NJ)~J  ~ - IoN)~NcNQ)~J~J~)d~ = 0 (15) 

Since the background value of J~ is of the order of k, the dynamical mass 
term can effectively be determined to third order of k. To this aim, we truncate 
the nonlinear term in Jr  from the source of the divergence (14). Computing 
then the remaining linear term by means of (12), we get 

0~j~ ~ _h N~j~ (16) 
10 
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Now, using (2), we can write this in terms of do as 

~0 0~do (17) 0r ~ -~  N~ do 

The fight-hand side of this equation can be linearized in do by using in the 
dominator the background value ~ for do. An approximate solution of (17) 
which is compatible with (12) can then be given, 

Jr ~-- X--~ Nr (18) 
10T 

We now use this solution for J~, in (15) to arrive at the field equation 

Ddo- 2~o ~ -  X~o ~--~ do = 0 (19) 

in which a linear and a quadratic term in do appear in the dynamical mass 
term. We can get a more effective form of this equation if we use in the 
linear term the background value ~ for do, leading to 

n d o -  2 ~  ~ - X  Fo~2] dO=O (20) 

This shows the effective contribution of the divergence theory (10) to the 
dynamical mass term in (11). Equation (20) can be derived from the effective 
Lagrangian density 

1 k2do2+ 1 k2do4 
= ~o [O~do0r - V(do)], V(do) = - 2  Fo ~ k ~-o ~-~ (21) 

from which we can now define the ground-state value doo of do by minimizing 
the potential V(do). This gives the condition doo 2 = (2/k)~ 2. Let us choose 
doo = (2/k)uz~ as the ground-state value on which to study the nature of 
physical excitations. The potential V(do) can be expanded around doo to yield 
(neglecting constant terms) 

( ol v(do) = 8 (do - do0) 2 + o((do - doo) 3) (22) 

from which we infer that physical excitations of dO around the ground-state 
value do0 provide a characteristic scale of mass of the order -Ml0. 

We may therefore argue that in the broken phase of the Lorentz invariance 
an effective cosmological constant A must appears which receives contribu- 
tions proportional to (M/o) 2, namely 

A ~ (X/lo) 2 (23) 
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which in conjunction with (13) yields 

A ~ 1 / R  2 (24) 

The agreement of this relation with the present observational bound for the 
cosmological constant is a remarkable consequence of the empirical fact that 
the present universe has just the characteristic size R - -  1029 cm. 

4. CONCLUDING REMARKS 

In this paper we have demonstrated that the broken phase of Lorentz 
invariance can provide a consistent contribution to the cosmological constant 
via the mass scale of an associated scalar condensate. The basic input was 
to consider the duality breaking as a cosmological effect. 

We emphasize that there may be a potential dependence of the energy 
density of the vacuum on the entire mass spectrum of physical fields in 
quantum field theory, for example, the Higgs mass. We have not commented 
on the dynamical reasons for why the corresponding contributions should 
cancel out. In this respect we must still look for more or less natural rules 
to establish the applicability of the model presented for the prediction of the 
value of the cosmological constant. We hope to address the issue elsewhere. 
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